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Abstract-The present paper is a theoretical study of the heat transfer by steady laminar forced con- 
vection in non-circular ducts. The region of cross-section of the duct under consideration is simply con- 
nected and bounded by an arbitrary non-circular closed curve. An arbitrary additional heat source 
distribution is assumed to be present within the fluid medium. The thermal boundary condition used 
is that the wall temperature varies linearly in the axial direction. Including viscous dissipation and work 
of compression in the thermal energy balance, the most general solution has been given in terms of integral 
formulas both for gases and liquids by using the technique of conformal mapping. General power series 
solution has been given for the case of gases only. For demonstration, the case of Cardioid duct with 
additional heat source distribution of constant intensity has been investigated numerically. Out of the 
mathematical work, only final results have been presented, and the description of methods have been 
deleted. To investigate the qualitative as well as the quantitative effects of viscous dissipation in the case 
of liquids, and those of viscous dissipation jointly with work of compression in the case of gases on heat 
transfer due to constant axial temperature gradient, is the principal object of the present study, and the 
emphasis also has been mainly given to this. It is found that the said effects are qualitatively remarkable, 
and usually significant quantitatively also under the condition of constant physical properties; which is 
a common simplification in a large number of heat-transfer studies. It is also concluded that if viscous 
dissipation and work of compression are significant in the heat-transfer problem of the present paper then 

the free convection effects thereby are insignificant. 

NOMENCLATURE DtY equivalent hydraulic diameter, 4A/S ; 
constant quantities, appearing as 9, acceleration due to gravity; 
coefficients in (37) ; h, heat-transfer coefficient ; 
area of cross-section of the given i, fundamental imaginary quantity, 
duct; J- 1; 
arbitrary non-circular closed curve, 
as the boundary of each cross- 
section of the given duct ; 
specific heat at constant pressure 
and referred to weight; 
parameter, (l/p) (dp/dz’) ; 
parameter, (pgC,z/K); 
heat source function or parameter, 

Q/K; 
parameter, Cr C2 ; 

thermal conductivity; 
physical length of the Cardioid cross- 
section defined by (51) ; 
representative length of D ; 
Nusselt number ; 
pressure ; 
Prandtl number ; 
heat-transfer rate from wall to fluid; 
intensity of additional heat-source 
distribution; 

domain of cross-section of the given r, 
duct, a simply connected finite region 
of boundary B ; S, 

1321 

radial coordinate in the physical 
plane, introduced in (51) ; 
linear measure of B ; 
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t, 

t’, 
T, 

U, 

local temperature within the fluid Subscripts 
medium ; i, condition at the entrance section ; 
time ; m, mean value ; 
difference between local and wall min, minimum value ; 
temperatures, t - t,; max, maximum value ; 
local velocity of a fluid particle in M, mixed mean value ; 
z’-direction ; W, value at the wall. 

x, y, z’, Cartesian co-ordinates, z’-axis is 
being parallel to the axis of the given 
duct ; 

Z, complex variable, x + iy. 

Superscripts 

(0, 
(d, 

the case of liquids ; 
the case of gases. 

Greek symbols 
a “3 known constant quantities, appear- 

ing as coefficients in (38); 

B, coefficient of thermal expansion ; 

r, boundary of the unit circular domain 
in [-plane ; 

t’ 

dilation of a fluid element ; 
complex variable in mathematical 
plane ; 

% parameter, p/K ; 

8, argument of i ; 

P, viscosity coefficient ; 

5, value of [ at r ; 

P, density ; 

0, vectorial angle in the physical plane, 
introduced in (51) ; 

7, constant axial temperature gradient, 
dt,Jdz’. 

1. INTRODUCTION 

A GROWING number of research workers have 
been engaged for some time in studying heat- 
transfer processes in non-circular duct flows. 
A man of technical science is interested because 
non-circular ducts are frequently encountered 
in almost all the branches of science and tech- 
nology, e.g. from automobile radiators to 
nuclear power plants, experimental physics, 
biological sciences, etc. Circular tube is the 
simplest particular case of general non- 
circular tube, and is simplest in analysis also. 
Many difficulties are encountered when an 
attempt is made to approach non-circular 
cross-section. Therefore a mathematician is 
also interested because he has many of the 
mathematical tools to be useful in theoretical 
approach. 

Operators 
D/Dt’, denotes total differentiation with 

respect to time ; 
Q2, denotes two-dimensional Laplacian 

operator ; 
prime, denotes differentiation with respect 

to argument unless the contrary is 
specified ; 

bar, denotes conjugate complex, e.g. Z = 
x - iy; 

IO denotes absolute value ; 

Re, denotes real part ; 

Im, denotes imaginary part. 

Moreover, there exists a basic difference 
between circular and non-circular cross-sec- 
tions when the Neumann-type thermal condi- 
tion is prescribed at the wall. In this situation 
the asymmetry of the non-circular cross-section 
gives rise to a circumferential temperature 
gradient, whereas this is not the case with cir- 
cular cross-section. There is no such distinction 
between circular and non-circular ducts when 
thermal boundary condition is Dirichlet type. 

The recent developments in the study of the 
general non-circular duct heat-transfer problem 
of Dirichlet type, which motivate the present 
study, are due to Tao [l-3]. Brief review of Tao’s 
work, which is necessary, will be given in a later 
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Section. In the succeeding Section we propose to 
state our problem. 

2. STATEMENT OF PROBLEM 

Consider the laminar and steady flow of a 
Newtonian fluid in a sufficiently long straight 
duct of non-circular singly connected cross- 
section of constant area. 

The cases under consideration are as follows : 

(a) Arbitrary rectifiable closed contour as the 
boundary of each cross-section of the given duct. 

(b) Arbitrary additional heat source distribu- 
tion within the flow region. 

(c) Linearly varying wall temperature in the 
axial direction as the thermal boundary condi- 
tion. 

The various simplifying assumptions to be 
made in the present study are as follows : 

(i) The convection is regarded as forced con- 
vection by assuming that the free convection 
effects are comparatively negligible. 

(ii) Fluid properties (viz viscosity, thermal 
conductivity, etc.) are regarded as constant 
physical quantities. 

(iii) The additional heat source distribution 
does not vary in the axial direction, and is given 
in terms of the remaining two space co-ordinates. 

(iv) The hydrodynamic and thermal inlet 
lengths are insignificant as compared to the 
length of the regime of the fully established 
velocity and temperature profiles. 

Thus, in view of the preceding simplifications, 
the region of flow to be discussed in the present 
study is that where velocity and temperature 
profiles have attained the fully developed condi- 
tions. 

The essential purpose of the present paper is 
to take viscous dissipation and work of com- 
pression into consideration in the thermal 
energy balance of a moving fluid element, and 
then to give the general solution of the stated 
non-circular heat-transfer problem. The princi- 
pal object of the present study then is to in- 
vestigate the qualitative as well as the quantita- 

tive effects of the aforementioned two physical 
facts on the heat transfer in the stated forced 
convection due to the constant axial wall 
temperature gradient. 

The present thermal boundary condition 
makes it relatively easier to obtain exact solu- 
tions. It is technically important also, as it is 
easily attainable in experiments and is reason- 
ably satisfied, for example, in some nuclear 
reactor cooling problems and in some counter 
flow heat exchangers. The subject matter of 
taking additional heat sources into account is of 
current interest. Such a heat source distribution 
within the fluid medium is encountered, for 
instance, in certain nuclear reactor heat-transfer 
problems. 

It may be said that the present problem is one 
ofthe most fundamental and important problems 
of heat transfer. It is useful in studying other 
heat-transfer problems of interest, e.g. mixed 
convection in which free convection effects may 
be treated as secondary effects; undeveloped 
regimes of velocity and temperature profiles ; 
variable property problems, etc. The present 
problem is also useful, perhaps, in studying the 
case of non-Newtonian fluids. Here, we specially 
refer to those fluid flows, which obey Rivlin- 
Ericksen constitutive equation for second-order 
fluids ; where non-Newtonian effects may be 
assumed to be secondary effects. 

3. GOVERNING EQUATIONS 

Under the aforegiven simplifying assump- 
tions, the velocity field of any fluid in the present 
problem is governed by the following equation 
only : 

(1) 

Including the quantity pA in the thermal 
energy balance of a moving element of any 
fluid, one obtains the term: 

in the energy equation, when C, is employed as 
the operative specific heat. For liquids, this 
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term can be dropped out of the energy equation 
in any case [4], since (l/~)@p/&)~ is usually 
very small for liquids. For gases this quantity 
is not small, and usually comparable with 
dissipation function [4, 51. According to the 
perfect gas law, one has (t/p)(ap/at),(Dp/Dt’) = 
(-Dp/Dt’). Thus we see that in the present 
problem, although the velocity field of a liquid 
and that of a gas remain the same, which is 
governed by equation (l), the temperature field 
in the case of liquids is different from that in the 
case of gases. Thus there should be two energy 
equations; one for liquids and the other for 
gases. 

Before we give these equations, note that as a 
consequence of the given simplifying assump- 
tions (i) to (iv) and the wall temperature varying 
linearly in the axial direction, the temperature 
of fluid (throughout this work, the word ‘fluid’ 
has been used for both liquids and gases) at any 
point varies linearly and at the same rate in the 
axial direction as the wall temperature does, 
i.e. aqazl = atw/azt = constant. 

Assuming t, to be constant in the peripheral 
direction, and letting dt,/dz’ = z (a constant 
having dimensions of temperature gradient), the 
following are the energy equations of the 
present problem for liquids and gases respec- 
tively : 

pgC,zu = KV2t”’ + Q 

pgC,zu = KV’t’g’ + Q 

The mathematical statement for the boundary 
conditions to be used is as follows: 

u(x, y) = 0 on B 

t”‘(X y z’) = P(x > > y z’) = t 9 > w (z’) 

1 

(4) 
= ti + TZ’ on B 

The superscripts (1) and (g) represent the 
cases of liquids and gases respectively. This 

convection is retained for other heat-transfer 
quantities which are going to occur later on. 
Any notation without the superscripts (1) and 
(g) is to be regarded as common to both liquids 
and gases. 

The terms involving 1 in equations (2) and 
(3) represent dissipation function. The term 
involving dpjdz’ in equation (3) is a consequence 
of the usually large thermodynamic pressure in 
gases [5], and is equal to Dp/Dt’ in the present 
case. 

The pressure gradient dp/dz’ is constant, and 
can be determined either experimentally or from 

dp - = K,pu,,jL_?. 
dz’ 

Here, K, is a negative real number; is different 
for different B ; and is given by 

K, = -M$&,~) dA1. (6) 

The boundary B of the simply connected 
region D is any closed tiontour. Furthermore, the 
heat source intensity Q is any arbitrarily pre- 
scribed function of x and y. 

4. NECESSARY REVIEW OF THE WORKS OF 

TAO AND MADEJSKI 

Neglecting the terms with p as coefficient in 
equation (2), and neglecting the same terms and 
the term with dpldz’ as coefficient in equation 
(3), the present system of governing equations 
reduces to that of Tao [ l-3].The mathematical 
formulation of this reduced system presented by 
Tao is somewhat unpleasnat and not simplest 
from a mathematics viewpoint. Tao unneces- 
sarily reduces the evaluation of the temperature 
profile to the evaluation of two temperature 
profiles. One accounts for T, and the other 
accounts for Q. The former was obtained as the 
result of solving biharmonic equation, and the 
latter was obtained as the result of solving 
Laplacian equation. However, the evaluation of 
the actual temperature profile does not require 
its partitioning and the involution of biharmonic 
equation in any case. This will be shown in a 
later section. Also, Tao has given the details of 
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the complex variable methods of solving bi- 
harmonic and Laplacian equations. However, 
these methods and the related basic mathe- 
matical concepts can be found in [6-91. 

The aims of Tao’s three papers [l--3] are as 
follows: The purpose of [l] is to show that there 
exists a class of non-circular ducts for which the 
solution can be obtained directly from the 
equations of B. The purpose of [2] is to show that 
the solution can be obtained by means of the 
technique of conformal transformation when 
B is an arbitrary non-circular closed contour. 
And the purpose of [3] is to show the unrelia- 
bility of the commonly used technique of 
equivalent circular duct. 

The basic equations of Madejski’s solution 
(i.e. the solution given by (8) in [lo]) are ob- 
tained if we set Q = r = 0 in equations (3) and 
(4) of the present case. The method of obtaining 
the said solution in [lo] is not mathematically 
rigorous, and not applicable in the cases of 
Q # 0 and z # 0. However, the purpose of 
[lo] is to examine the effects of the inclusion 
of work of compression in the thermal energy 
balance on the temperature profile in the case 
of constant material properties. The cases of 
circular and flat conduits have been analysed 
completely. 

In the author’s knowledge, the other work, 
where the work of compression has been taken 
into consideration in the case of constant pro- 
perty flow, is due to Riley [ll]. He has studied 
the heat-transfer problem of converging flow 
between non-parallel plane walls. 

5. AMOUNT OF VISCOUS DISSIPATION AND 

COMPRESSION WORK IN THE PRESENT 

HEAT-TRANSFER PROBLEM 

The omission of viscous dissipation in the 
thermal energy balance for any real fluid, and 
the omission of compression work in the thermal 
energy balance for any real gas are unrealistic 
from the physics of fluids. Thus Tao’s works 
[l-3] are approximate studies of the stated 
heat-transfer problem, and do not show any 
distinction between liquids and gases. On the 

other hand Madejski’s work [lo] is not approxi- 
mate, and marks the distinction between the 
heat transfer in liquids and that in gases. But 
the study in [lo] is comparatively simpler 
and may be regarded as a particular case of the 
present one. 

The DF (abbreviation for “dissipation func- 
tion”) and hence the TP (abbreviation for “total 
time derivative of pressure”) may in general be 
ignored if and only if the temperature differences 
in the flow field are chiefly due to applied 
heating (e.g. the solid may be maintained at a 
certain temperature distribution [4]). This is 
true even in the case of non-solenoidal motion, 
since by means of applied heating, one can 
create non-solenoidality [12], and also mixed 
convection, turbulence, etc. 

However, in the following we shall see that, in 
reasonably satisfying the assumptions (i, ii and 
iv) of the given assumptions (stated in Section 2 ; 
which have been made in Tao Cl-33 also), the 
amount of DF in a liquid flow and the amounts 
of DF and TP in a gas flow come out to be 
significant. 

Let L be the representative length, IC,/E be 
the representative velocity, and /z/L be the 
representative temperature. Then the represen- 
tative estimate (i.e. a relative measure with 
respect to heat of convection) for the amount of 
DF in a liquid flow, or that for the amount of 
DF or TP or DF + TP in a gas flow, for the 
present forced convection, from “dynamical 
similarity principle”, is given by 

Here use of (5) has been made, and the mean 
velocity has been replaced by the entrance 
velocity; since they are equal in the present 
case. 

In general, the effects of TP and hence those 
of DF in forced convection, under Dirichlet- 
type thermal boundary condition, are consider- 
able if they are appreciably comparable with the 
amount of heat consumption per unit time to 
look forward to changing the temperature of a 
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fluid element. This is certainly satisfied when the 
driving forces (i.e. pressure forces) are large or 
when the energy of motion and its total time 
rate of change are large. Mathematically speak- 
ing, for the present problem, this is nothing but 
to say that DF in the case of liquids, and DF and 
TP in the case of gases, are considerable if I$ 
bears significant value. 

Before discussing the magnitude of the dimen- 
sionless number r/l, let us first obtain the 
relative amount of the free convection in the 
present forced convection problem, since this 
will be seen entangled with the desired dis- 
cussion. Because of z # 0, a certain amount 
(however small) of free convection may be 
present in the present problem. Because of this 
free convection, regarded as the secondary 
convection imposed on the primary forced con- 
vection in the present case, the flow pattern and 
hence the temperature field are being altered. 
Using the same aforementioned representative 
quantities, we obtain the following dimensionless 
group under the “similarity analysis” to give 
the representative estimate of the relative amount 
of the free convection in the present forced 
convection 

(8) 

Like q’, q” also holds good for both liquids and 
gases. 

Note that both q’ and v” involve some of the 
material properties, the representative flow and 
thermal conditions, and the representative length 
of the system. Therefore, each of them is a 
complete parameter. 

It is known from various studies and [4,13,14] 
that the hydrodynamic entry length is directly 
proportional to the square of L. Furthermore, it 
can be concluded from the available literature 
that the temperature distribution due to r(#O) 
over a cross-section is also proportional to ~9. 
Therefore, in order to satisfy the assumptions 
(ii) and (iv) reasonably, L must be sufftciently 
small. 

In order that a material element has suffered 
negligible alteration of a physical property in 

its motion over a reasonable distance in the 
axial direction ; and also in order that a physical 
property is reasonably constant throughout a 
cross-section, the magnitude of T must be small. 

Thus, in order to satisfy that the fluid tem- 
perature varies linearly and at the same rate in 
the axial direction as the wall temperature does, 
and keeping in view the temperature differences 
over a cross-section due to Q(#O), only low 
magnitudes of r and L are permissible. 

Given any fluid, there is a physical property 
which varies considerably with temperature. 
For instance, viscosity varies very rapidly with 
temperature in the case of liquids. In the case 
of gases, density is an important function of 
temperature. If we look into the table for water 
[13], we find that the ratio of viscosity at 0°C 
to that at 25°C is 2. 

Calculations show that in the case of the 
circular tube flow of water with ui = 10-O cm/s 
and initial temperature 20°C the hydrodynamic 
entry length is approximately 1150 cm when 
the radius is 1.0 cm. The absolute difference 
between the temperature at the wall and that 
at the axis, on the basis of the calculations made 
for fully developed flow, is approximately 245 
degC due to \rl = 0.1 degC/cm. This example 
does not satisfy the conditions (i), (ii) and (iv). 

All this shows that L and IrI are sufficiently 
small in the problem in hand, and as a conse- 
quence we find that essentially I$( bears signi- 
ficant value ; IfI bears insignificant value ; and 
hence the Grashof number (which is directly 
proportional to (.rl,!? in the present case) bears 
too insignificant value. Thus the assumption 
(i) is automatically satisfied. 

Now, with sufficiently small L we can assign 
a large value to ui within the limits of the laminar 
flow. For instance, it has been seen [4] that the 
flow behaviour of water does not change with 
ui = 1250.0 cm/s in the circular tube of radius 
0.005 cm. 

Calculations of several examples of B show 
that the constant K, has a magnitude which is 
greater than unity. This again signifies Iy’I and 
insignifies ($‘I. 
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Thus our conclusions with regards to DF, 
TP and free convection in the heat-transfer 
problem in hand are as follows : 

If DF in the case of liquids and DF and TP 
in the case of gases are considerable then the 
free convection effects are negligible in both the 
cases. It may, however, be remarked that the 
range of the present forced convection with 
considerable free convection, and the range of 
the intermediate case (i.e. the case of negligible 
DF, TP and free convection) are quite narrow. 

For moderate values of ui, DF in a liquid flow 
and DF and TP in a gas flow are definitely 
appreciable. These are negligible at quite a low 
speed. 

Since it has appeared that we are concerned 
with conduits of narrow bore, let us remark 
that a conduit of narrow bore is very important 
in experiments. The problem ofnon-circular duct 
is important, because non-circular cross-section 
is frequently encountered with narrow bores. 
In the case of a broad bore (e.g. circular cross- 
section of radius equal to 1.0 cm), all of the given 
assumptions, excluding (iii), may not hold good 
satisfactorily. 

The magnitudes of q’ which represent negli- 
gible DF in liquids and negligible DF and TP 
in gases, will be investigated in the last section. 

6. MOST GENERAL SOLUTION IN TERMS OF 

INTEGRAL FORMULAS 

Since the number of factors of heat transfer 
considered here is greater than that considered 
in Tao [l-3], the mathematical expression of 
any heat-transfer result of the present study 
will be longer than that of the corresponding 

result of [2]. However, we should not mind it, 
since the additional factors considered here are 
physical facts (viz. viscous dissipation and work 
of compression). 

The system of equations of heat transfer 
for liquids, and that for gases cannot be solved 
by using the method of Madejski, but can be 
solved most easily by employing the methods 
of complex variables. 

Along with certain additional manipulations, 
the present system of governing equations (both 
for gases and liquids) can be solved just like that 
in [2]. The mathematical formulation, which is 
simplest. and which avoids the partitioning of 
the temperature profile and does not require 
involution with biharmonic equation, is given 
in this section. We need not give any details, 
but outlines and then final results only. 

Introduce complex variables z and Z in 
equations (14). Then transform them by means 
of appropriate conformal map from the physical 
plane to another complex plane where the 
physical domain D is being mapped onto unit 
circular domain. Now reduce each of the mo- 
mentum and energy equations to Laplacian 
form by making a change of variable. Since the 
momentum equation is uncoupled with the 
energy equation of any case (the case of liquids 
as well as the case of gases), it can be solved 
independently. 

Let [[I Q 1, with boundary r, be the unit 
circular domain in c-plane which is being 
mapped onto D in the z-plane by means of the 
conformal map 

z = G(C). (9) 

The velocity distribution (both for gases and liquids) is, therefore, 

where 

-- 
a = 2 {Q(C) Q(5) + 2 Re [Y(C)]} (10) 

s 

- 
’ 

Y(C) = - 2Ki 
“: a(;/{) dr _ jj(0) 

(11) 
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Using (9) to (1 l), and introducing 

C,(z, 2) = C,(x, Y) = (l/K) Qk Y) 

WL%) = C,(W)> a(D) 

s(L -0 = a j j ML T) WI) U’(r) dc de 

G(5) = ML Dl, 

W) = j Y(l) W) dr 

the temperature field in the case of liquids is given by 

(12) 

(13) 

(14) 

(15) 

(16) 

T(l) = c4 - ttc: 

64 
fi2(m20 + c4 ‘8 “’ Re ID3 @Kll - s(L T) 

+ 2 Re CVVJI - $/ VW) a(T). 2 Re Ml>] + ~(0 jC)> (17) 

and the temperature field in the case of gases is given by 

P) = g a’([) a’(<) + % Re PC) @(c)l - g([, 5) + 2 Re [t,W([)] 

- g {s2(0a(c) + 2 Re [JK)])~ (19) 

,/,(g)(c) = & [ _ 2 1 n2(: y:1,,) dt _ $ s’(‘/s) @(<; “_ $8 ‘(l/t) d{ 

r r 

As yet, the heat source intensity is being regarded as an arbitrary function of x and y. The most 
general form of the heat source function, which can be allowed in the mathematical analysis in 
terms of complex variables, is the analytic function. Thus regarding Q(x, y) as an analytic function 
in D, the heat source function can be expressed as 

C,(z, 2) = Re [w(z)] (21) 

in the z-plane, or can be expressed as 

ML 7) = Re CWOI (22) 
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in the c-plane. The functions w(z) and W(5) are analytic functions, at least in D and 1 lJ < 1 respectively. 
Therefore, we have 

s(L 5) = @C) d(C) + Q(C) X) (23) 

where 

d(5) = g SW(C) Q’(C) di. (24) 

Now, the last but one term on the right-hand side of (18) or (20) can be set a priori. 

From above, the case of constant heat source distribution is deduced as 

We shall be dealing with the case of heat source function described by (22) in this and the succeeding 
Section only. Then, in remaining Sections, we shall deal with the particular cases of zero and con- 
stant heat source intensities. 

For the present problem, the heat-transfer quantities of main interest are mean temperature T,, 
mixed mean temperature TM, heat-transfer rate q, heat-transfer coeffkient h and Nusselt number Nu. 

The first three of these quantities in the case of liquids are given as follows : 

- g s fY<) ~(0 a’(W) Q’(5) d5 1 
r 

Tg = & Im (J1 + J, + .J3 + J4) 
m 

J _ c4 - vc: 
1- 64 [s 

$ Q3(0 a4(1/5) da(t) + 3 
s 

Q2(5) a3(1/5) y(5) da(t) 
r r 1 

+ c4 + ?G 

16 ~(5) Q(5) @(l/5) dQ(5) + 3 
s 

Q(5) a(5) ~3(1/5) dQ(5) 
l- r 

+ i s ~(5) Q(5) ~20/4 df45) 1 
J 

2 
= r&f 

16 [I 
~~(5) @l/5) dQ(O + 9 

s 
Q(r) ~(0 @(l/5) @l/C) - @(l/5)) da(t) 

r r 

(26) 

(27) 

(274 

4P 



+ 5 i ~'(0 Ytll$ d5 + ~~tl!n JW5) Q’(t) dt - j@liS) WI dt . (28) 

In deriving (26) to (28), we made use of the Complex Stokes Theorem [7]. Expecially, the Gauss 
Theorem was used in order to obtain the heat-transfer rate. The definition of TM is 

7” = (l/u,A) j UT d/l. 
D 

The quantities A, u,, etc. are given below 

A = ; 
s 

@I/O Q’(5) d5 (29) 
r 

%I = 2 Im a 
{S 

Q(5) a2(1/5) Q’(r) d[ + 
s 

@l/5) Q’(5) d5 
1 

(30) 
I- r 

cp(i) = j Q(i) fi’(5) di 

cpl(i) = j NJ Q’(5) dL’. (31) 

Similarly, using the Complex Stokes‘Theorem, the Gauss Theorem in making the energy balance 
over D, and (29) to (31) the same quantities (namely T,, TM and q) for the case of gases were obtained 

(32) 

(33) 

(334 
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(33b) 

(33c) 

(33d) 

(34) 

Now, the heat-transfer rate and the Nusselt number based on mixed mean temperature can be 
obtained both for gases and liquids from 

h = - q/ST,, Nu = hDe/K (35) 

where 

s = i IWO1 de, 
--n: 

De = 4AjS. (36) 

7. GENERAL POWER SERIES SOLUTION 

It may be recognized that the evaluation of the various integrals in the r-plane, occurring in the 
preceding Section, depends on the nature of the mapping function (9). The purpose of this Section 
is to give the general series solution such that the solution for any given B and Q (i.e. for given 52(C) 
and W(c) respectively) is deducible directly from it. 

It is known that every singly connected domain can be mapped onto the unit circular domain Cl.51 
in some different appropriate complex plane, and the mapping function can be obtained possibly 
[6] either in the exact or approximate form. 

Furthermore [6], any given conformal map can be written in the form a power series. Let us, 
therefore, write 

z = a([) = 1 c&i”. (37) 
0 

In general, (37) may be an infinite series and the constant coefficients a, may be complex number. 
Since W(c) is an analytic function, d(i) can be written also as 

d(5) = T %i”. (38) 

Using (37), the quantities which remain the same both for gases and liquids were obtained in 
the series form as follows 

(39) 
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(40) 

(42) 

Similarly, mixed-mean temperature and hence heat-transfer coefficient and Nusselt number can 
be calculated in the form of power series. But this should not be done here, because a large number of 
additional notations would be introduced. Also, for the same reason we do not propose to produce 
the heat-transfer quantities of the case of Iiquids in rhe power series form. 
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In many cases (e.g. nearly circular ducts [15], rectangular ducts, etc.) where mapping function 
does not exist in closed form, but in the form of an infinite series, the mathematical results in the 
form of general power series are useful. Applicability of such results becomes important when the 
given mapping function can be approximated by a polynomial, such as 

z = a,(r) = t a,[ 
0 

in the sense that the polynominal z = 52,([) maps the circular region l[l < 1 onto some domain D, 
in z-plane which can be made to approach the true domain D as closely as desired. In many cases, 
only first four or five terms of the series expression of sZ([) give a good approximation to D [6]. 

8. FURTHER RESULTS OF INTEREST WHEN THE WALL TEMPERATURE IS CONSTANT AND THE 
ADDITIONAL HEAT SOURCES ARE ABSENT 

When the wall is adiabatic, and the temperature does not vary in the axial direction, then the 
following holds good for the channel-laminar fully developed flows : 

This, in the present study, holds good for the case of gases if and only if z = Q = 0. In this case, the 
temperature field for gases reduces to 

p 2 t(g) = t, - --!L u 

w, 
(47) 

This is the temperature field which has been earlier obtained by Madejski [lo], and has been said 
equal to the temperature distribution in the vortex tube. However, the temperature distribution in 
the case of liquids is not given by (47). It is quite different from (47) and also the condition of adiabatic 
wall is not satisfied. Hence (46) will not hold good for liquids. Therefore Madejski’s discussion of 
liquids is not relevant. 

Using (46) and (47), the temperature change at the wall, i.e. t, - t, and the temperature drop at 
the location of maximum speed, i.e. ti - t$“, are given by 

At; = K,Pr - (K2 - l), At:, = (K2 - 1) + Pr(K3 - KJ (48) 
where 

At; = t,' - t;, A& = t+ - t(g!+ 
I m,n 9 

-- K2 = (;; m > K, - uiax 
u; . 

(49) 

(50) 

Although K, and K, do not involve the characteristic length of D, nevertheless they are different 
for different ducts. Thus At: and At~i, depend on Prandtl number as well as on the configuration of 
the given duct. 

9. ILLUSTRATIVE EXAMPLE: CARDIOID- DUCT 

In order to apply previous derivations, and to illustrate the effects of viscous dissipation in the 
case of liquid and the effects of viscous dissipation and compression work in the case of gases, let 
us select the example of Cardioid cross-section. Let the equation of the boundary be 

r = 21(1 + cos a). (51) 
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The unit circular domain, /cl < 1, in the i-plane is being mapped onto Cardioid domain (defined 
by 51) in the z-plane by 

z = Q(i) = 1{1 + {)2. (52) 

As regards heat source function, let us consider only the case of constant heat source intensity, 
i.e. C&x, y) = C, = a positive constant quantity. 

Using 

u = $CI12((l f {f2(1 + r)” - 2Re(3 + 41 + <“)j (53) 

A = 6n12, S = 161, U, = - +$ C,12 (54) 

the heat-transfer quantities for the case of liquids are 

T”’ _ c4 - ?G 4 

64 
I ((1 + Q4(1 + p)” - 2 Re (35 + 561 4 281’ -i- Xc3 + (“,j 

+ c4 + rlct 4 

48 
1 Re ((114 + 1761 + 85c2 + Xi2 + 2@ + 3c4) - (1 + 3)‘(361 -k 42r2 

+ 2013 + 3c”)) + 9 la Re {(l + {)’ (1 + w2(3 + 41 + i2) - (35 + 561 + 281’ + SC3 

+ c”)> + ‘2 j4(2 Re (13 + 16[ + 35’) - (3 $ 41 + i2)(3 f 4r f 4”)) 

+ y (2 Re(3 + 41 + c2) - (1 + Q2(1 i- 5)“) (55) 

Nt” zzz n2 765 (17 + 24Cj f 17~‘) 

30503 + 3104OC; + 1386511’ 

(531 

(58) 

(59) 

(60) 

where 

c; = C3/C4P. (61) 

Similarly, using (531, (54) and (611, the corresponding results in the case of gases are 

T(g) = $$ {(l + Q4(1 + z)” - 2 Re (35 + 56[ + 28c2 + Si” t <“)f 
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+ 48 Re ((114 + 1765 + 

+ 314)) + y (2 Re (3 + 
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851’ + 26c3 + 3c4) - 
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(1 + c)2(36c + 42c2 + 2013 

41 + C2) - (1 + 5)‘(1 + %)‘I 

- T ((1 + c)‘(l + r)’ - 2 Re (3 + 41 + C’)}’ (62) 

(63) 

(64) 

(65) 

(66) 

N(g) = ~‘765 (17 + 24Cj) 
” (30503 + 3104OC; - 16638q’)’ 

(67) 

In the case of gases, the quantities At; and 
At~i” of Section 8 are, for Cardioid duct, 

At; =sPr-s, 
A&,= 1.031915 + 2.056569 Pr (68) 

In the absence of heat sources (i.e. C3 = 0) 
if Q, c2, c3 and e4 be the error in per cent of heat- 
transfer rate, mean temperature, mixed-mean 
temperature and Nusselt number respectively 
due to the omission of DF in liquid flows and 
DF and TP in gas flows, then these are given as 
follows : 

In the case of liquids, we have 

(I) _ low 
El 

(1) _ lo@-’ -m; E2 
-- 

2 + q' 

(I) _ lOO1' 
&3 -p. 

(1) - 6004f 
2.2 + q” E4 - ll(1 + V’) (69) 

and in the case of gases 

$) = 0; E(ZB) = 
- lOO$ 

2 - q’ 

(g) _ - 6001’ 
E3 -p. 

11 - 61” 
#) = 600 q’ 

11 . 
(70) 

10. DISCUSSION AND CONCLUDING REMARKS 

Looking into (68) we find that At; is negative, 
i.e. cooling effect at the wall, when Pr < 0.508. 
Heating effect is expected when Pr > 0.508. 
These results are different from the correspond- 
ing results of circular and flat conduits [lo]. 
This confirms the dependence of At; and 
Atf, on duct configuration. Tables based on 
experiments show that for air and many other 
gases under ordinary conditions of temperature 
and pressure the Prandtl number is greater 
than 0.508. It may thus be concluded here that 
in the problem of Section 8 which is valid for 
gases only the heating effect will usually be 
observed at the wall. In the case of air at 15”C, 
calculations with Ui = 10 m/s give ti - t!,$, = 
0.073”C and those with ui = 50 m/s give 
ti - tf$ = 1.825”C. Thus in the channel laminar 
gas flow with entrance speed up to 10 m/s 
the temperature differences ti - t$, and 
t, - ti are quite small. Figure 1 shows the varia- 
tions of At; and Atm’i” with Prandtl number. 

Before proceeding further to illustrate the 
effects of DF in the case of liquids and the 
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combined effects of DF and TP in the case of 
gases, both qualitative and quantitative in each 
case, the following should be noted first. The heat 
source parameter C; and the parameter q’ are 
both either positive or negative. The first case 
occurs when z < 0, and the other case occurs 
when r > 0. 

Pf 

FIG. 1. Cardioid duct gas flow: temperature change at the 
wall and temperature drop at the line of maximum velocity 

vs. Prandtl number. 

If we compare (28) and (34) we find that qcg) 
does not involve q’; but q’*’ involves 9’. We can 
confirm this in particular by comparing (58) 
and (65). This tells us that the combined effect 
of DF and TP on qcg) is zero. From this we can 
conclude that the contributions of DF and TP 
to q(g) are equal in magnitude, but opposite in 
direction. However, the contributions of DF 
and TP to heat-transfer rate have different 
magnitudes within the gaseous medium except 
at the location of maximum velocity where 
each is individually zero. Thus we find that the 
heat-transfer rate at the solid boundary only, 
in the case of gases, remains the same as that 
in the case of Tao; i.e. the case of negligible DF 
and TP. This statement is untrue for the case of 
liquids. Therefore one is required to discuss the 
effects of DF on 4 (‘) Under crucial examination . 
of (58) we find that the effect of DF is to diminish 
heat transfer when surface transfers heat to 
fluid (which is possible if and only if z > 0) and 
to magnify heat transfer when heat is transferred 
to surface (which is always true when z < 0 and 
also possible when z > 0). Certain more interest- 
ing points may be seen in Fig. 2, which gives the 

graphical variation of the dimensionless heat- 
transfer rate 

$I)‘( = q”‘/C&P) 

against the heat source number C; where u’ is 
being regarded as parameter. The curve rep- 
resenting the case of zero dissipation (i.e. q’ = 0) 
in Fig. 2 agrees with Fig. 1 of [2]. 

4 o-5 - 

3 

21 04- 4 
((1 

0.3 - 

\;, , 

0.2 - 

-8 -6 -4 -2 2 4 
I 

6 

I T)‘= 0.0 

2 l)‘=-05 
3 ?j’ -1.0 
4 $=-SO 
5 7’=0.5 
6 $=I,0 
7 7’=3,0 

-0.6 

FIG. 2. Cardioid duct liquid flow: heat-transfer rate q”)’ vs. 
heat source number C; with $ as parameter. 

Although we have seen that the combined 
effect of DF and TP on qcg’ is zero, this is not 
the case with other relevant heat-transfer quan- 
tities of the case of gases. For instance, see (63) 
(64), (66) and (67). 

From (63) and (64), we conclude that the 
combined effect of DF and TP is to inhibit the 
dimensionless mean temperature T!$/CJ4 as 
well as the dimensionless mixed-mean tempera-’ 
ture Tg/C4Z4 when z < 0, and to augment 
both when r > 0. On the other hand, from (56) 
and (57), we note that the effect of DF is to 
augment T!,?/C414 and T$/C414 when z < 0, 
and to diminish both when z > 0. Thus we see 
that the combined effects of DF and TP are 
opposite to the corresponding effects of DF in 
nature. This clearly shows that DF and TP 
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produce effects which are opposite in nature, also 
that the intensity of the effects of TP is greater 
than that of the corresponding effects of DF. 

Now, we come to the discussion of Nusselt 
number. The combined effects of DF and TP, 
in the case of gases, on the Nusselt number are 
shown in Fig. 3. The effects of DF, in the case of 
liquids, on the Nusselt number can be seen in 
Figs. 4 and 5. Figs. 3, 4 and 5 give a picture of 
the variation of the Nusselt number vs. CL 
when u]’ plays the role of independent parameter. 
For the case of gases we have shown both the 
cases : z > 0 and z < 0 in Fig. 3, but for the case 
of liquids we found it convenient to picture 
them separately; Fig. 4 represents the case z > 0 
and Fig. 5 represents the case of z < 0. 

5 

lies in a certain finite interval. To each value of 
CL lying in some different finite interval at which 
Nu”) becomes zero, there corresponds one and 
only one value of q’ in the said interval. 

(ii) For each value of q’, there exists a value of 
C; at which N&j becomes infinite. But, this is 
not the case with NM (I) Nu”’ becomes infinite . 
when q’ lies in a certain finite interval. 

16 

14 
I -7)” 00 

2 - $ z-o.5 12 

j - ?’ i -, .o 

IO 

6 

I I I I- I I I 11 
-2.5 -20 -1.5 0.5 I.0 I.5 2.0 25 

, 

c3 

FIG. 4. Cardioid duct liquid flow (the case of z z 0): Nusselt 
-70 -- number Nu(” vs. heat source number Cs at few values of ‘1’. 

I 2 3 5 

FIG. 3. Cardioid duct gas flow: Nusselt number NucB) vs. 
heat source number C; at various values of q’. 

(iii) In Fig. 4, we see that there exists a value of 
C; at which Nu”’ remains the same for all values 

We note the following for Nu’~) and Nu”’ when of n’. Calculations show that this value of C; is 

z > 0: nearly 1.45 1. 

(i) Nu(~) becomes zero at C; = - 17/24 for Further, our discussion of Nu”) and Nutg) 
all values of q’. Nu(‘) becomes zero only when q’ when z < 0 is as follows : 
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(i) Neither Nu@) nor Nu(‘) becomes zero at 
any value of C; for all values of q’. 

(ii) For all values of q’, Nu”’ does not become 
infinite and remains finite at each value of C;. 
But the condition of Nucg) is somewhat different : 
It remains finite and non-negative at each value 
of C; till q’ < 11/6. Non-negative values and 
discontinuity of N&J) are observed only when 
9’ 2 11/6. 

0 I 2 3 4 5 6 7 0 

c; 

FIG. 5. Cardioid duct liquid flow (the case oft < 0): Nusselt 
number Nu” vs. heat source number C; at few values of 1’. 

(iii) There does not exist any value of C; at 
which either Nu”’ or Nucg) becomes constant 
for all values of I]‘. However, we have a value of 
q’ at which Nusselt number is same for all 
values of C;. For liquids this is v]’ = 1.04 
approximately, and for gases it is q’ = 051 
approximately. 

Several more interesting points may be noted 
from Figs. 3-5. 

In summing up, one can say that the quali- 
tative effects of DF are quite interesting and 
remarkable when z > 0. The combined qualita- 
tive effects of DF and TP are equally interesting 
and remarkable when r > 0. Although the effects 
of DF in the case of q’ > 0 are not that interesting 
as they are in the case of FJ’ < 0, but the combined 
effects of DF and TP in the case of q’ > 0 are not 
less interesting as compared to those in the 
case of q’ < 0; and rather the case of q’ > 0 is 
more interesting than the case of q’ < 0. 

In order to visualize the combined quanti- 
tative effects of DF and TP in the case of gases 
and the quantitative effects of DF in the case of 
liquids, we present Figs. 6, 7 and 8. Figure 6 
shows the picture of the variations of &), E?) 
and &kg) vs. q’. In this Figure, the axis of q’ can 
be regarded as the graph of E?). Figures 7 and 8 
represent the case of liquids. The variations of 
et’ and s$) vs. 9’ have been pictured in Fig. 7. 
And 1’:’ and E$$ have been pictured in Fig. 8. 

FIG. 6. Cardioid duct gas flow: variatihs of &), 62’ and 
&” with q’. 

In these Figures, we see that the errors are 
significant even at small values of 111’1. In this 
connexion, furthermore, we look into Table 1. 

We find that the quantitative effects of DF, and 
the combined quantitative effects of DF and TP 
may be insignificant when \?‘I < @l. However, 
they are considerable when [?‘I > 0.1. Note that 
at q’ = 1 we have s1 (0 ZZ 50, sq) = 33.33, &(:) = 

31.25, E$) = 27.27, ~2) = - 100.0, E’$‘) = - 120.0 
and ~2) = 54545. 

One may now ask: Do some physical ex- 
amples exist which belong to the subject matter 
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of the present study and where q’ assume magni- 
tudes such as ($1 > O-l? The ansCer is “yes”, 
and the following examples are given. 

50 

-4o- 

-5o- 

-6O- 

-7o- 

-60 - 

-90 - 

-lOO- 

FIG. 7. Cardioid duct liquid flow: variations of # and ~2) 
with $. 

Numerical example 1 
Consider the flow of water through a duct of 

finite length, say 50 cm. Let D, = 0.05 cm, 
Ui = 3 X lo2 cm/s, Jr1 = OGO5”C/~ and ti = 
20°C. The relevant physical properties of water 
in c.g.s. system at initial temperature 20°C are: 
/.l = 1.002 x 10-2; p = 0.998, gc, = 0.999. 

Numerical example 2 
Consider the flow of air through the duct of 

the previous example. Let D, = 0.2 cm, Ui = 
10m3 cm/s, (r( = 0.05 degC/cm and ti = 15°C. 

The relevant physical properties of air in c.g.s. 
system at initial temperature 15°C are: ~1 = 
1.8 x 10-4, p = 1.203 x 10-3, gC, = 0.240. 
The conversion factor of gC, is J = 4.184 x 10’. 

For Cardioid cross-section, our calculations 
show that lq’l > 0.2 in the first example and 
lq’l > 0.26 in the second example. Obviously 
these are significant magnitudes of q’. 

Performing additional calculations, one can 
verify that all the conditions, i.e. the assumptions 
of laminar flow, constant physical properties, 
negligible free convection, and negligible entry 
length, are sensibly satisfied in both the examples. 

In the case of oils, e.g. typical aircraft engine 
oil, the magnitude of q’ is usually significant even 
at low speeds, and is much larger than that in the 
case of water. 

5or / 

I 1 I 1 1 I I I I I 

-1.0 -0.6 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.6 I.0 

FIG. 8. Cardioid duct 

-6O- 

-70 

-60 

-90 
i 

liquid flow: variations of Q 
~2’ with 11’. 

and 

Table 1 

11’ I+;‘:’ eI” &$’ ey 4’ %’ fY 

0.1 90909 4.7619 4.3478 4.9586 - 5.263 - 5.769 5.45 
-0.1 -11.1111 - 5.2632 -4.7619 - 6Q606 4.762 5.172 5.45 
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AHHOTaqHn-HpMBO;lIlTCR TeOpeTiW3XOe HCCJleAOBaHHe TeIIJIOO6MeHa B yCTaHOBRBUIeMCfi 

JIaMclHapHOM nOTOKe npM BbIHyH(AeHHOi+f KOIIBeKLVlM B Tpy6aX HeKpyrJIOrO CeYeHCIR. MCCJIe- 

AyeMan 06nacTb nonepeworo ceqeHws Tpy6bI OrpaHHqeHa npOH3BOJIbHOti 3aMKHyTO# 

K~HBO~I. 11peAnosareTcn, <ITO B noToKe MMeeT MecTo npoi43Bozbf3oe pacnpeAeJIewe Aonon- 

HHTenbKoro ~icT0wwa Tenna. McnonbayeMoe TennoBoe rpaKwwoe ycnosne C~CT~HT B TOM, 

'ITO TeMnepaTypa CTeHKP JIHHeirHO M3MeHReTCH B aKCKaJIbHOM HaIIpaBJIeHMR. c yVeTOM 

nn3rtofi nnccnnaqen w pa6oTbI cH(aTHH B ypaBHeHnn TennoBoro 6anaHca MeToAoM K0~$0pM- 

HMX npeo6paaoBaHd IronyqeHo Kam6onee 06uee pemeaxe B sHAe wITerpanbHbIx $opmyn 

AJIH ra30B M EWAKOCTeti. 06qee peuerise cTeneHfIor0 pnAa AaeTcR TonbKo AnR ra30B. 

@JI MJlJIIoCTpa~Mll 9UCJIeHHO HCCJIeAOBaJICFI CJIy'Iai-l KapAHOMAHOi Tpy6bI C AOnOJIHHTeJIb- 

HMM TenJIOBbIM ACTO'IHBKOM nOCTORHHOti MOIUHOCTM. npABOARTCR TOJIbKO OKOH'IaTeJIbHbIe 

pe3yJlbTaTbI 6e3 MaTeMaTll'leCKMX I3bIKJIaAOK. OCHOBHO~ UeJIbH, AaHHOa CTaTbll HBJIReTCfi 

uccnefionaune i~a9ecTneunoro II tronn9ecTneunoro B~C~RHAR BH3KoZt AwzllnaqrrM Anrr 

BWlAKOCTeti, a TaK?Ke 3TOrO We BJIw~sHMR C yYeTOM pa6oTbI CHCaTMR AJIfi ra30B Ha TeIlOO6MeH 

aa weT nocTofliwor0 aKcHaJIbHor0 TeMnepaTypHoro rpaAHetiTa. HaliAeHo, 9To yKa3aHHne 

3$,@eKTbI Ka9eCTReHHO 3aMeTIIbI Lt 06bIqHO KOJIMqeCTBeHHO npOJIBJIHlOTCH npH nOCTORHHbIX 

@43WIeCKMX CBOtiCTBaX, ‘,TO RBJIReTCH 06bIWbIM ynpOll(eHMeM B pHAe RCCJIeAOBaHdi no 

Tennoo6meny. Tarone c;le.nae BNBOA, 9TO eCJIll BR3KaR AIlCCAnaqliR M pa6oTa C*aTHR B 

3aAaqe 0 Tennoo6reIie, paccMaTpMBaeMofi R AaHHofi CTaTbe, 3HaWTeJlbHbI, TO CBO6OAHaR 

KOKBeKqPlH 6yAeT He3HaWTeJlbHOfi. 


