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Abstract—The present paper is a theoretical study of the heat transfer by steady laminar forced con-
vection in non-circular ducts. The region of cross-section of the duct under consideration is simply con-
nected and bounded by an arbitrary non-circular closed curve. An arbitrary additional heat source
distribution is assumed to be present within the fluid medium. The thermal boundary condition used
is that the wall temperature varies linearly in the axial direction. Including viscous dissipation and work
of compression in the thermal energy balance, the most general solution has been given in terms of integral
formulas both for gases and liquids by using the technique of conformal mapping. General power series
solution has been given for the case of gases only. For demonstration, the case of Cardioid duct with
additional heat source distribution of constant intensity has been investigated numerically. Out of the
mathematical work, only final results have been presented, and the description of methods have been
deleted. To investigate the qualitative as well as the quantitative effects of viscous dissipation in the case
of liquids, and those of viscous dissipation jointly with work of compression in the case of gases on heat
transfer due to constant axial temperature gradient, is the principal object of the present study, and the
emphasis also has been mainly given to this. It is found that the said effects are qualitatively remarkable,
and usually significant quantitatively also under the condition of constant physical properties; which is
a common simplification in a large number of heat-transfer studies. It is also concluded that if viscous
dissipation and work of compression are significant in the heat-transfer problem of the present paper then
the free convection effects thereby are insignificant.

NOMENCLATURE D, equivalent hydraulic diameter, 44/S ;
constant quantities, appearing as ¢, acceleration due to gravity;
coefficients in (37); h, heat-transfer coefficient ;
area of cross-section of the given i, fundamental imaginary quantity,
duct; V-1
arbitrary non-circular closed curve, K, thermal conductivity;
as the boundary of each cross- l physical length of the Cardioid cross-
section of the given duct; section defined by (51);
specific heat at constant pressure L, representative length of D;
and referred to weight ; Nu, Nusselt number;
parameter, (1/u)(dp/dz’); D pressure ;
parameter, (pgC,t/K); Pr, Prandtl number;
heat source function or parameter, q heat-transfer rate from wall to fluid;
Q/K; Q, intensity of additional heat-source
parameter, C,C,; distribution;
domain of cross-section of the given 7, radial coordinate in the physical
duct, a simply connected finite region plane, introduced in (51);
of boundary B; S, linear measure of B;
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t, local temperature within the fluid Subscripts
medium ; i, condition at the entrance section;
t, time ; m, mean value;
T, difference between local and wall min, minimum value;
temperatures, t — t,,; max, maximum value;
u, local velocity of a fluid particle in M, mixed mean value;
z'-direction w, value at the wall.
x,y,z, Cartesian co-ordinates, z'-axis is
being parallel to the axis of the given  Superscripts
duct; 0, the case of liquids;
z, complex variable, x + iy. (9), the case of gases.
Greek symbols 1. INTRODUCTION
s known constant quantities, appear- A GROWING number of research workers have
ing as coefficients in (38); been engaged for some time in studying heat-
B, coefficient of thermal expansion; transfer processes in non-circular duct flows.
r, boundary of the unit circular domain A man of technical science is interested because
in {-plane; non-circular ducts are frequently encountered
A4, dilation of a fluid element ; in almost all the branches of science and tech-
¢, complex variable in mathematical nology, e.g. from automobile radiators to
plane; nuclear power plants, experimental physics,
", parameter, u/K; biological sciences, etc. Circular tube is the
0, argument of {; simplest particular case of general non-
U, viscosity coefficient; circular tube, and is simplest in analysis also.
£, valueof (at I'; Many difficulties are encountered when an
P, density; attempt is made to approach non-circular
o, vectorial angle in the physical plane, cross-section. Therefore a mathematician is
introduced in (51); also interested because he has many of the
T, constant axial temperature gradient, mathematical tools to be useful in theoretical
dt,/dz". approach.
Moreover, there exists a basic difference
between circular and non-circular cross-sec-
Operators tions when the Neumann-type thermal condi-
D/Dt', denotes total differentiation with tion is prescribed at the wall. In this situation
respect to time; the asymmetry of the non-circular cross-section
V2, denotes two-dimensional Laplacian gives rise to a circumferential temperature
operator; gradient, whereas this is not the case with cir-
prime, denotes differentiation with respect cular cross-section. There is no such distinction
to argument unless the contrary is between circular and non-circular ducts when
specified ; thermal boundary condition is Dirichlet type.
bar, denotes conjugate complex, e.g. Z = The recent developments in the study of the
x — iy; general non-circular duct heat-transfer problem
[, denotes absolute value; of Dirichlet type, which motivate the present
Re, denotes real part; study, are due to Tao [1-3]. Brief review of Tao’s
Im, denotes imaginary part. work, which is necessary, will be given in a later
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Section. In the succeeding Section we propose to
state our problem.

2. STATEMENT OF PROBLEM
Consider the laminar and steady flow of a
Newtonian fluid in a sufficiently long straight
duct of non-circular singly connected cross-
section of constant area.
The cases under consideration are as follows:

(a) Arbitrary rectifiable closed contour as the
boundary of each cross-section of the given duct.

(b) Arbitrary additional heat source distribu-
tion within the flow region.

(c) Linearly varying wall temperature in the
axial direction as the thermal boundary condi-
tion.

The various simplifying assumptions to be
made in the present study are as follows:

(i) The convection is regarded as forced con-
vection by assuming that the free convection
effects are comparatively negligible.

(i) Fluid properties (viz. viscosity, thermal
conductivity, etc) are regarded as constant
physical quantities.

(iii) The additional heat source distribution
does not vary in the axial direction, and is given
in terms of the remaining two space co-ordinates.

(iv) The hydrodynamic and thermal inlet
lengths are insignificant as compared to the
length of the regime of the fully established
velocity and temperature profiles.

Thus, in view of the preceding simplifications,
the region of flow to be discussed in the present
study is that where velocity and temperature
profiles have attained the fully developed condi-
tions.

The essential purpose of the present paper is
to take viscous dissipation and work of com-
pression into consideration in the thermal
energy balance of a moving fluid element, and
then to give the general solution of the stated
non-circular heat-transfer problem. The princi-
pal object of the present study then is to in-
vestigate the qualitative as well as the quantita-
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tive effects of the aforementioned two physical
facts on the heat transfer in the stated forced
convection due to the constant axial wall
temperature gradient.

The present thermal boundary condition
makes it relatively easier to obtain exact solu-
tions. It is technically important also, as it is
easily attainable in experiments and is reason-
ably satisfied, for example, in some nuclear
reactor cooling problems and in some counter
flow heat exchangers. The subject matter of
taking additional heat sources into account is of
current interest. Such a heat source distribution
within the fluid medium is encountered, for
instance, in certain nuclear reactor heat-transfer
problems.

It may be said that the present problem is one
of the most fundamental and important problems
of heat transfer. It is useful in studying other
heat-transfer problems of interest, e.g. mixed
convection in which free convection effects may
be treated as secondary effects; undeveloped
regimes of velocity and temperature profiles;
variable property problems, etc. The present
problem is also useful, perhaps, in studying the
case of non-Newtonian fluids. Here, we specially
refer to those fluid flows, which obey Rivlin—
Ericksen constitutive equation for second-order
fluids; where non-Newtonian effects may be
assumed to be secondary effects.

3. GOVERNING EQUATIONS
Under the aforegiven simplifying assump-
tions, the velocity field of any fluid in the present
problem is governed by the following equation
only:

z_ldp_
Vi 3= Co 1)

Including the quantity pA in the thermal
energy balance of a moving element of any
fluid, one obtains the term:

(t/p)(@p/0t),(Dp/Dr")

in the energy equation, when C, is employed as
the operative specific heat. For liquids, this
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term can be dropped out of the energy equation
in any case [4], since (1/p)(0p/dt), is usually
very small for liquids. For gases this quantity
is not small, and usually comparable with
dissipation function [4, 5]. According to the
perfect gas law, one has (t/p)(0p/dt),(Dp/Dt’) =
(—Dp/Dt’). Thus we see that in the present
problem, although the velocity field of a liquid
and that of a gas remain the same, which is
governed by equation (1), the temperature field
in the case of liquids is different from that in the
case of gases. Thus there should be two energy
equations; one for liquids and the other for
gases.

Before we give these equations, note that as a
consequence of the given simplifying assump-
tions (i) to (iv) and the wall temperature varying
linearly in the axial direction, the temperature
of fluid (throughout this work, the word ‘fluid’
has been used for both liquids and gases) at any
point varies linearly and at the same rate in the
axial direction as the wall temperature does,
ie. 0t/0z = 0t,/oz = constant.

Assuming t,, to be constant in the peripheral
direction, and letting dt,/dz’ = 1 (a constant
having dimensions of temperature gradient), the
following are the energy equations of the
present problem for liquids and gases respec-
tively:

pgC,mu = KV + Q
ou\? ou\?
* “{(‘aﬁ * (5;)} 2

pgC,u = KV*@ + Q

ou\? ou\? dp
' u{(@ " <a—y) } ¥

The mathematical statement for the boundary
conditions to be used is as follows:

u(x,y) =0 on B
t(x, y,2') = t9(x, y,2') = t,(2) 4)
=t + 12 on B

The superscripts () and (g) represent the
cases of liquids and gases respectively. This
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convection is retained for other heat-transfer
quantities which are going to occur later on.
Any notation without the superscripts (I) and
(g) is to be regarded as common to both liquids
and gases.

The terms involving p in equations (2) and
(3) represent dissipation function. The term
involving dp/dz’ in equation (3) is a consequence
of the usually large thermodynamic pressure in
gases [5], and is equal to Dp/Dt’ in the present
case.

The pressure gradient dp/dz’ is constant, and
can be determined either experimentally or from

dp
Fr K pu,/I2. (5)
Here, K is a negative real number; is different
for different B; and is given by

K, = A/[!)(u/Cle) d4]. (6)

The boundary B of the simply connected
region D is any closed contour. Furthermore, the
heat source intensity Q is any arbitrarily pre-
scribed function of x and y.

4. NECESSARY REVIEW OF THE WORKS OF
TAO AND MADEJSKI

Neglecting the terms with p as coefficient in
equation (2), and neglecting the same terms and
the term with dp/dz’ as coefficient in equation
(3), the present system of governing equations
reduces to that of Tao [1-3]. The mathematical
formulation of this reduced system presented by
Tao is somewhat unpleasnat and not simplest
from a mathematics viewpoint. Tao unneces-
sarily reduces the evaluation of the temperature
profile to the evaluation of two temperature
profiles. One accounts for t, and the other
accounts for Q. The former was obtained as the
result of solving biharmonic equation, and the
latter was obtained as the result of solving
Laplacian equation. However, the evaluation of
the actual temperature profile does not require
its partitioning and the involution of biharmonic
equation in any case. This will be shown in a
later section. Also, Tao has given the details of
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the complex variable methods of solving bi-
harmonic and Laplacian equations. However,
these methods and the related basic mathe-
matical concepts can be found in [6-9].

The aims of Tao’s three papers [1-3] are as
follows: The purpose of 1] is to show that there
exists a class of non-circular ducts for which the
solution can be obtained directly from the
equations of B. The purpose of [2] is to show that
the solution can be obtained by means of the
technique of conformal transformation when
B is an arbitrary non-circular closed contour.
And the purpose of [3] is to show the unrelia-
bility of the commonly used technique of
equivalent circular duct.

The basic equations of Madejski’s solution
(i.e. the solution given by (8) in [107]) are ob-
tained if we set Q = 7 = 0 in equations (3) and
(4) of the present case. The method of obtaining
the said solution in [10] is not mathematically
rigorous, and not applicable in the cases of
Q # 0 and t # 0. However, the purpose of
[10] is to examine the effects of the inclusion
of work of compression in the thermal energy
balance on the temperature profile in the case
of constant material properties. The cases of
circular and flat conduits have been analysed
completely.

In the author’s knowledge, the other work,
where the work of compression has been taken
into consideration in the case of constant pro-
perty flow, is due to Riley [11]. He has studied
the heat-transfer problem of converging flow
between non-parallel plane walls.

5. AMOUNT OF VISCOUS DISSIPATION AND
COMPRESSION WORK IN THE PRESENT
HEAT-TRANSFER PROBLEM

The omission of viscous dissipation in the
thermal energy balance for any real fluid, and
the omission of compression work in the thermal
energy balance for any real gas are unrealistic
from the physics of fluids. Thus Tao’s works
[1-3] are approximate studies of the stated
heat-transfer problem, and do not show any
distinction between liquids and gases. On the
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other hand Madejski’s work [10] is not approxi-
mate, and marks the distinction between the
heat transfer in liquids and that in gases. But
the study in [10] is comparatively simpler
and may be regarded as a particular case of the
present one.

The DF (abbreviation for “dissipation func-
tion”’) and hence the TP (abbreviation for “total
time derivative of pressure”’) may in general be
ignored if and only if the temperature differences
in the flow field are chiefly due to applied
heating (e.g. the solid may be maintained at a
certain temperature distribution [4]). This is
true even in the case of non-solenoidal motion,
since by means of applied heating, one can
create non-solenoidality [12], and also mixed
convection, turbulence, etc.

However, in the following we shall see that, in
reasonably satisfying the assumptions (i, ii and
iv) of the given assumptions (stated in Section 2 ;
which have been made in Tao [1-3] also), the
amount of DF in a liquid flow and the amounts
of DF and TP in a gas flow come out to be
significant.

Let L be the representative length, |C,|? be
the representative velocity, and |t|L be the
representative temperature. Then the represen-
tative estimate (i.e. a relative measure with
respect to heat of convection) for the amount of
DF in a liquid flow, or that for the amount of
DF or TP or DF + TP in a gas flow, for the
present forced convection, from “dynamical
similarity principle”, is given by

| = l8pdz] K

pgColtl  pgCoL2 e
Here use of (5) has been made, and the mean
velocity has been replaced by the entrance
velocity; since they are equal in the present
case.

In general, the effects of TP and hence those
of DF in forced convection, under Dirichlet-
type thermal boundary condition, are consider-
able if they are appreciably comparable with the
amount of heat consumption per unit time to
look forward to changing the temperature of a

™
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fluid element. This is certainly satisfied when the
driving forces (i.e. pressure forces) are large or
when the energy of motion and its total time
rate of change are large. Mathematically speak-
ing, for the present problem, this is nothing but
to say that DF in the case of liquids, and DF and
TP in the case of gases, are considerable if ||
bears significant value.

Before discussing the magnitude of the dimen-
sionless number 7', let us first obtain the
relative amount of the free convection in the
present forced convection problem, since this
will be seen entangled with the desired dis-
cussion. Because of 7 # 0, a certain amount
(however small) of free convection may be
present in the present problem. Because of this
free convection, regarded as the secondary
convection imposed on the primary forced con-
vection in the present case, the flow pattern and
hence the temperature field are being altered.
Using the same aforementioned representative
quantities, we obtain the following dimensionless
group under the “‘similarity analysis” to give
the representative estimate of the relative amount
of the free convection in the present forced

convection

cirr K} ‘
Like #', n” also holds good for both liquids and
gases.

Note that both #' and " involve some of the
material properties, the representative flow and
thermal conditions, and the representative length
of the system. Therefore, each of them is a
complete parameter.

Itis known from various studies and [4, 13, 14]
that the hydrodynamic entry length is directly
proportional to the square of L. Furthermore, it
can be concluded from the available literature
that the temperature distribution due to (#0)
over a cross-section is also proportional to I7.
Therefore, in order to satisfy the assumptions
(i) and (iv) reasonably, L must be sufficiently
small.

In order that a material element has suffered
negligible alteration of a physical property in
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its motion over a reasonable distance in the
axial direction ; and also in order that a physical
property is reasonably constant throughout a
cross-section, the magnitude of © must be small.

Thus, in order to satisfy that the fluid tem-
perature varies linearly and at the same rate in
the axial direction as the wall temperature does,
and keeping in view the temperature differences
over a cross-section due to Q(#0), only low
magnitudes of T and L are permissible.

Given any fluid, there is a physical property
which varies considerably with temperature.
For instance, viscosity varies very rapidly with
temperature in the case of liquids. In the case
of gases, density is an important function of
temperature. If we look into the table for water
[13], we find that the ratio of viscosity at 0°C
to that at 25°C is 2.

Calculations show that in the case of the
circular tube flow of water with u; = 10-0 cm/s
and initial temperature 20°C, the hydrodynamic
entry length is approximately 1150 cm when
the radius is 1-0 cm. The absolute difference
between the temperature at the wall and that
at the axis, on the basis of the calculations made
for fully developed flow, is approximately 245
degC due to |t| = 01 degC/cm. This example
does not satisfy the conditions (i), (i) and (iv).

All this shows that L and [t] are sufficiently
small in the problem in hand, and as a conse-
quence we find that essentially \ni bears signi-
ficant value; |n”| bears insignificant value; and
hence the Grashof number (which is directly
proportional to |t| L' in the present case) bears
too insignificant value. Thus the assumption
(i) is automatically satisfied.

Now, with sufficiently small L we can assign
a large value to u; within the limits of the laminar
flow. For instance, it has been seen [4] that the
flow behaviour of water does not change with
u; = 1250-0 cm/s in the circular tube of radius
0-005 cm.

Calculations of several examples of B show
that the constant K, has a magnitude which is
greater than unity. This again signifies |»’| and
insignifies |n"}.
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Thus our conclusions with regards to DF,
TP and free convection in the heat-transfer
problem in hand are as follows:

If DF in the case of liquids and DF and TP
in the case of gases are considerable then the
free convection effects are negligible in both the
cases. It may, however, be remarked that the
range of the present forced convection with
considerable free convection, and the range of
the intermediate case (i.e. the case of negligible
DF, TP and free convection) are quite narrow.

For moderate values of 4, DF in a liquid flow
and DF and TP in a gas flow are definitely
appreciable. These are negligible at quite a low
speed.

Since it has appeared that we are concerned
with conduits of narrow bore, let us remark
that a conduit of narrow bore is very important
in experiments. The problem of non-circular duct
is important, because non-circular cross-section
is frequently encountered with narrow bores.
In the case of a broad bore (e.g. circular cross-
section of radius equal to 1-0 cm), all of the given
assumptions, excluding (iii), may not hold good
satisfactorily.

The magnitudes of ' which represent negli-
gible DF in liquids and negligible DF and TP
in gases, will be investigated in the last section.

6. MOST GENERAL SOLUTION IN TERMS OF
INTEGRAL FORMULAS
Since the number of factors of heat transfer
considered here is greater than that considered
in Tao [1-3], the mathematical expression of
any heat-transfer result of the present study
will be longer than that of the corresponding
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result of [2]. However, we should not mind it,
since the additional factors considered here are
physical facts (viz. viscous dissipation and work
of compressign).

The system of equations of heat transfer
for liquids, and that for gases cannot be solved
by using the method of Madejski, but can be
solved most easily by employing the methods
of complex variables.

Along with certain additional manipulations,
the present system of governing equations (both
for gases and liquids) can be solved just like that
in [2]. The mathematical formulation, which is
simplest, and which avoids the partitioning of
the temperature profile and does not require
involution with biharmonic equation, is given
in this section. We need not give any details,
but outlines and then final results only.

Introduce complex variables z and Z in
equations (1-4). Then transform them by means
of appropriate conformal map from the physical
plane to another complex plane where the
physical domain D is being mapped onto unit
circular domain. Now reduce each of the mo-
mentum and energy equations to Laplacian
form by making a change of variable. Since the
momentum equation is uncoupled with the
energy equation of any case (the case of liquids
as well as the case of gases), it can be solved
independently.

Let [{| < 1, with boundary I, be the unit
circular domain in {-plane which is being
mapped onto D in the z-plane by means of the
conformal map

z = (). ©)

The velocity distribution (both for gases and liquids) is, therefore,

‘= % QOB + 2 Re HOT

where

W) = -

27i
r

1 IQ@ 2(1/¢)

(10)

d¢ — 30) (11)

-{
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Using (9) to (11), and introducing

Cs(z, 2) = Cslx, y) = (1/K) Q(x, y) (12)
M) = C3{Q0), (0} (13)
9.0 =4I ML D QOQ'Q A dT (14)
G(¢) = [9(. D]r (135)
Q) = [N Q) dC (16)
the temperature field in the case of liquids is given by

Co—nC? i
T® = 4_64'7__1 QYD) + Ca ; nCi Re [QQ) ()] — 9(6.D)

c? — -
+2Re [y0)] - THRO O . 2Re O] + WO 3O} (17)

yo) = 1 [ €y —nCY [Q%)Q*(1/¢) Cy + nC3 [Q1/8) B(8) + QA& (1/8)
2ni 64 E—t 16 &E-¢

r r
nC3 { J’ X&) 2(1/¢) [¥(&) — 3(1/)] dE + j y(&) y(1/¢)
16 &E-¢ ¢-1

dé¢ - d¢

4+

" LGQ dé}]— 590) 18)
PE-¢

and the temperature field in the case of gases is given by

d¢

T = SO D) + £ Re [BO) (0] - 96T + 2 Re [9(0)]

1CY o OF 2
— 35 O Q0 + 2Re MO} (19

oo L[ Ca [P@OPD ., Co [R1/0 DO + A)B/D
o= 5| G [FOR0D,, G 141 &
r r
6O 1 e
' jé_cdé] 790). (20)

As yet, the heat source intensity is being regarded as an arbitrary function of x and y. The most
general form of the heat source function, which can be allowed in the mathematical analysis in
terms of complex variables, is the analytic function. Thus regarding Q(x, y) as an analytic function
in D, the heat source function can be expressed as

Ci(z, 2) = Re [w(2)] 21
in the z-plane, or can be expressed as

M(, D) = Re [W(0)] (22)
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in the {-plane. The functions w(z) and W({) are analytic functions, at least in D and |¢| < 1 respectively.
Therefore, we have

9., = Q0 4©) + A0 A0) (23)
where
AQ) = 5 W) Q) dL. (24)

Now, the last but one term on the right-hand side of (18) or (20) can be set a priori.
From above, the case of constant heat source distribution is deduced as

96D = 20000, 9

We shall be dealing with the case of heat source function described by (22) in this and the succeeding
Section only. Then, in remaining Sections, we shall deal with the particular cases of zero and con-
stant heat source intensities.
For the present problem, the heat-transfer quantities of main interest are mean temperature T,
mixed mean temperature T, heat-transfer rate g, heat-transfer coefficient # and Nusselt number Nu.
The first three of these quantities in the case of liquids are given as follows:

_ C2 _ 2 _
Ty = % Im [9—4@"—1 f QUG R1/E) Q) d¢ + C—;—"ﬁ f D) Q2(1/8) Q'(Q) &¢
r r
2
-1 f A Q1) Q) dE + jw”(«f) /e @ de - L 1 B0 2@ 4t
r r r
"C% =2 "
-3 |20y @) d (26)
TO = _Cl_[
M= m(y, +J, +J3+ Jy) @7

4u,A
_C4_"C%; 3¢5y T4 1 201 33
J, = e |® Q&) Q5(1/8) dAE) + 5 | Q%) 2(1/8) w(&) dA(&)
r r
C, + ﬂC%

16 [ Jy(é) Q&) p(1/8) Q) + % ffb(i) Q8 2%(1/9) d(%)

r
+4 jy(é) P(&) Q%(1/¢) dQ(é)} (27a)

r
nC3

TS [ j YA P(1/8) d(Q) + 3 fﬂ(i) W& {R(1/8) 8(1/¢) — H(1/€)} dAE)
r r

+ %'[92(6) Q%(1/¢) y(&) dA) + %j Q%(1/8) A9 y*(©) dQ(f)] (27b)

4p
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Js =1 [ A WO DY Y + [y v B(/H QG + [y T/ A 7o)
Jo= - (3 [ QO R/ 4Q) dQ) + [ 40) 1O R(1/) d(Q)
+ 129y 6,110 da®)] 27d)

’“1

q(l) 1’]C2 _

K = Cond — 41Im U (1/9) (<) dé} - -—I { jﬂ(i) Q19 Q@) d
r
+

2 fy(é) y(1/9) dé + fQ(l/é) y(1/8) 2(¢) d¢ — fd’(l/é ) 2(<) dé} (28)

In deriving (26) to (28), we made use of the Complex Stokes Theorem [7]. Expecially, the Gauss
Theorem was used in order to obtain the heat-transfer rate. The definition of T, is

Ty = (1/u,A) | uT dA.
D
The quantities A, u,,, etc. are given below

) B
A4 =75 fﬂ(l/é) (8 d¢ (29)

r

C — -
Uy = f Im {i— jﬂ(@ Q*(1/¢) (&) d¢ + j‘ﬁ(l/i) () dé} (30)
r r
@(0) = § (0 QO &
{) = 40 Q) dC. (31
Similarly, using the Complex Stokes Theorem, the Gauss Theorem in making the energy balance

over D, and (29) to (31), the same quantities (namely T,,, T, and g) for the case of gases were obtained
as

T® = ! Im [;‘; JQZ(é) QX5 Q) dE + == j¢(€) Q(1/6) (9 d&
r

+ f YO Q(1/¢) 2§ dE — M(é) Q%(1/) Q(¢) d¢

{ Jﬂz(é) Q¥(1/0) (¢ d¢ + jQ(é) W& Q*(1/8) (&) d&

+ MO 2@ e + [y T1/ 210 dé}] (32)
TG = vy Im(Js + Jg + J; + Jg) (33)
C,

Js =

6 4[ '[93(5) Q4(1/8) dQ(8) + 3 jﬂz(é) Q3178 1(&) dA)
r r

+ % [ (9 Q&) 3(1/8) dQQ) + 2 fy(i 2(1/8) #(8) dQ(8)
+4 rf &) (&) ¢(1/¢) dQ(é)] (33a)
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2
Jo = — 13%1[% jﬂa(é) Q41/¢) dA(&) + JQZ(@ Q3(1/8) y(¢) dQ&)
r r
+3 rf Q%(1/¢) (&) y*(&) (&) + 3 1[ yA(&) B(1/¢) d(&)
+3 l Q&) y(&) {Q(1/) B(1/¢) — @(1/8)} dAE) + ; y(&) Q(1/9) dQ(f)] (33b)
J7 =3 [ Q&) &) Q3(1/¢) d&) + ! (&) YO Q(1/8) dAS) + ; Y& B(1/¢) dQ(&) (33¢c)
r

Jg = J, see (27d) (33d)
%(-;—) = AC,u, — 41Im { .[Z(l/é) dQ(é)}. (34)

r

Now, the heat-transfer rate and the Nusselt number based on mixed mean temperature can be
obtained both for gases and liquids from

h= —q/ST, Nu=hDe/K (35)

I

where

i |2)ds, De = 44/s. (36)

—T

1%
i

7. GENERAL POWER SERIES SOLUTION

It may be recognized that the evaluation of the various integrals in the {-plane, occurring in the
preceding Section, depends on the nature of the mapping function (9). The purpose of this Section
is to give the general series solution such that the solution for any given B and Q (i.e. for given Q({)
and W({) respectively) is deducible directly from it.

It is known that every singly connected domain can be mapped onto the unit circular domain [15]
in some different appropriate complex plane, and the mapping function can be obtained possibly
[6] either in the exact or approximate form.

Furthermore [6], any given conformal map can be written in the form a power series. Let us,
therefore, write

z=Q) = Zo:a.,C"- (37

In general, (37) may be an infinite series and the constant coefficients a, may be complex number.
Since W({) is an analytic function, A({) can be written also as

AQ) = Y o, (38)

0

Using (37), the quantities which remain the same both for gases and liquids were obtained in
the series form as follows

C i — —
u= ‘4‘1 [Yal"Yal"— (Y DL+ Y DM (39)
0 0 0 0
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Cl —
U = o[ Y b, + Y bB, —4Y ra,d,] (40)
8,60 i) 1 1
A =1 raa,
0

where

m=§%ﬂw Do =1by; D, =b,(whenn > 1)

Z n+ r n+rar; :B—n = Z ran+rar (42)
1] [4]
Now, using (37) to (42), we have for the case of gases
C
TW — gizo:g"{;ﬁ Zéngn {Z = (:nz Angn + Z anin Z A ‘:n)
+ ZB,,C“ + Y Bl — (Z al"y al" + Y a,,C“ Zor.,,é’“)
0 [¢) [1] 1] [i]
C2 - -
" [Z ol Y al" = (X D" +LDOP (43)
TO = . [192 (R b+ Yd ) - g<z ef-) + ) — (LhB-, + Zﬂ,ﬂ,)]
4] 1 O i
CZ
+ AT BB - T (S, + T AB) - (T(F, - bD)S-,
+§Mﬂ+§hm+;aa+§&mﬂ (44)
4 = AKC,u,, — 81K Y raq, (45)
[ .

where

"
Ay = (I/mA, (whenn>1);  Ao=A;=0; A, =) raD,., B, =3B,
0

C C,
d e e+ S+ S

B, = B, = 1); = —
. . {whenn ) B “ T

IE

"
20: n—r + 22 bn—&rbr: €y = }(_:,Am'*rars C ey = ;an-ﬁAr’ .f;: = ;an-war

f“'y; = %an-?rar’ Z n P h" = %:D"+r5r; h___” = ;53+rDr
F, = }_n: Db, .. G, = i ra,D,_,, H, = iD,DV,A
[ 0 [

Similarly, mixed-mean temperature and hence heat-transfer coefficient and Nusselt number can
be calculated in the form of power series. But this should not be done here, because a large number of
additional notations would be introduced. Alse, for the same reason we do not propose to produce
the heat-transfer quantities of the case of liquids in the power series form.
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In many cases (e.g. nearly circular ducts [15], rectangular ducts, etc.) where mapping function
does not exist in closed form, but in the form of an infinite series, the mathematical results in the
form of general power series are useful. Applicability of such results becomes important when the
given mapping function can be approximated by a polynomial, such as

N

z =) = ;arC’
in the sense that the polynominal z = Qy({) maps the circular region |{| < 1 onto some domain Dy
in z-plane which can be made to approach the true domain D as closely as desired. In many cases,
only first four or five terms of the series expression of Q({) give a good approximation to D [6].

8. FURTHER RESULTS OF INTEREST WHEN THE WALL TEMPERATURE IS CONSTANT AND THE
ADDITIONAL HEAT SOURCES ARE ABSENT

When the wall is adiabatic, and the temperature does not vary in the axial direction, then the
following holds good for the channel-laminar fully developed flows:

u? u?
Au,, <C,,t,- + 2—g) = Ju <C,,t + 2—g,) dA4. (46)
D

This, in the present study, holds good for the case of gases if and only if t = @ = 0. In this case, the
temperature field for gases reduces to

(9) — _ P r 2

19 =t, 2ngu . (47)
This is the temperature field which has been earlier obtained by Madejski [10], and has been said
equal to the temperature distribution in the vortex tube. However, the temperature distribution in
the case of liquids is not given by (47). It is quite different from (47), and also the condition of adiabatic
wall is not satisfied. Hence (46) will not hold good for liquids. Therefore Madejski’s discussion of
liquids is not relevant.

Using (46) and (47), the temperature change at the wall, i.e. z,, — t,, and the temperature drop at

the location of maximum speed, ie. t; — t¥),, are given by

mins

Aty = KyPr— (K = 1), Atfi, = (K, — 1) + PriK; — K)) (“48)
where
At =t — b, Ath = 1f — 8, 49)
2gC t (u3)m ur%:ax
tt = u'2np’ K, = u,?‘ . K; = u,%, . (50)

Although K, and K do not involve the characteristic length of D, nevertheless they are different
for different ducts. Thus At,, and At,;, depend on Prandtl number as well as on the configuration of
the given duct.

9. ILLUSTRATIVE EXAMPLE: CARDIOID DUCT
In order to apply previous derivations, and to illustrate the effects of viscous dissipation in the
case of liquid and the effects of viscous dissipation and compression work in the case of gases, let
us select the example of Cardioid cross-section. Let the equation of the boundary be

r = 2l(1 + cos o). (51)
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The unit circular domain, |{ [ < 1, in the {-plane is being mapped onto Cardioid domain (defined
by 51) in the z-plane by
z=Q0) =1+ )% (52)

As regards heat source function, let us consider only the case of constant heat source intensity,
1e. C4{x, y) = C; = a positive constant quantity.
Using

u=3C 1 + A +0? - 2Re(3 + 4 + %)} (53)
A=6rl’S=16LU,=—3CP (54)
the heat-transfer quantities for the case of liquids are

(f)-—g“_:..’zgi‘* 4. Fyd 2 3 437
TO = & B+ 01 + O* — 2Re (35 + 560 + 2802 + 8% + (M}

43 Re {(114 + 176{ + 85(* + 260 + 26> + 3(%) — (1 + DP(36L + 420°

c? -
+ 2003 + 304} + %ir‘ Re {(1 + 0*(1 + DG + 4 + (%) — (35 + 560 + 280> + 8

2
+ M+ %%‘— F2Re(13 + 160 + 303 — B + 4L + (Y3 + 4T + 1}

CiP _
+ T 2ReB 440+ ) = (L + DL+ TP} (59)
97 17 97
O = .4 oy 20
T = Cd (144 2 T g ) (56)
30503 97 13865
O _ 4 B o R 33
Tu = Cd (32640 Tt 72640’?) 3)
_ CKA% (17 17
o 4 e 58
1 6n (24 G+ ) (8)
3K [ (17 17 30503 97 13865
()] — ' o 7 T 59
= [(24 TGt g )/ (32640 TR 32640”)] 9)
o mT765(17 + 24C; + 17n) 0
“ 7 30503 + 31040C; + 138654’ )
where
= C3/C,l% (61)

Similarly, using (53), (54) and (61), the corresponding results in the case of gases are

T = C4l4
64

{(1 + 0% + O* — 2Re (35 + 560 + 2802 + 80% + ()}
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C4l4 2 3 4 2 2 3
4 Re {(114 + 1760 + 850 + 260° + 3(*) — (1 + IP(G6L + 420% + 20
4 C312 2 2 \2
+3C)}+T{2Re(3+4f+l)—(1+C)(1+C)}
c214
- (1401 + 07 —2Re(3 + 40 + (A (62)
97 17 97
@ — .4 .91 63
T = Cd <144 *24C 7 %3 ") (63)
30503 97 16638
@ — 4 2l e 29920 64
it = Cdl (32640 102 T 32620 ") (64)
 CKA (17
@ — 4 : 65
9 6n (24 * C) (65)
3K [(17 30503 97 16638
{9) - - I b 0 [t 66
=g {(24 * C3>/ <32640 T 102 ¢ 32640")} (66)
2 ’ .
— 765 (17 + 24C3) )

(30503 + 31040C; — 166387’

In the case of gases, the quantities Az, and
At of Section 8 are, for Cardioid duct,

49914 25349
24565 24565

Atli = 1031915 + 2056569 Pr  (68)
In the absence of heat sources (i.e. C; = 0)
if g4, &,, €5 and ¢, be the error in per cent of heat-
transfer rate, mean temperature, mixed-mean
temperature and Nusselt number respectively
due to the omission of DF in liquid flows and
DF and TP in gas flows, then these are given as
follows:
In the case of liquids, we have

At =

w

& = 100n" = 100y’
1 + r’r’ 2 + ’7’
L S B )
22 + 9" 111 + %)
and in the case of gases
— 100y’
=0 =
— 600y’ 600
@) — . @ — 2"
e #=qpn (0

10. DISCUSSION AND CONCLUDING REMARKS
Looking into (68) we find that At} is negative,
i.e. cooling effect at the wall, when Pr < 0-508.
Heating effect is expected when Pr > 0-508.
These results are different from the correspond-
ing results of circular and flat conduits [10].
This confirms the dependence of Ar! and
At} on duct configuration. Tables based on
experiments show that for air and many other
gases under ordinary conditions of temperature
and pressure the Prandtl number is greater
than 0-508. It may thus be concluded here that
in the problem of Section 8 which is valid for
gases only the heating effect will usually be
observed at the wall In the case of air at 15°C,
calculations with u; = 10 m/s give ¢, — t¥9)_
0-073°C and those with u, = 50 m/s give
t; — t@, = 1-825°C. Thus in the channel laminar
gas flow with entrance speed up to 10 m/s
the temperature differences ¢; t9  and
t,, — t; are quite small. Figure 1 shows the varia-
tions of At; and At};, with Prandtl number.

Before proceeding further to illustrate the
effects of DF in the case of liquids and the
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combined effects of DF and TP in the case of
gases, both qualitative and quantitative in each
case, the following should be noted first. The heat
source parameter Cy and the parameter #' are
both either positive or negative. The first case
occurs when 7 < 0, and the other case occurs
when 7 > 0.

st

X
bf S

N
T

02 04 06 08 10
Pr

F1G. 1. Cardioid duct gas flow: temperature change at the
wall and temperature drop at the line of maximum velocity
vs. Prandt] number.

If we compare (28) and (34), we find that g%
does not involve #’; but g involves 1. We can
confirm this in particular by comparing (58)
and (65). This tells us that the combined effect
of DF and TP on ¢ is zero. From this we can
conclude that the contributions of DF and TP
to g9 are equal in magnitude, but opposite in
direction. However, the contributions of DF
and TP to heat-transfer rate have different
magnitudes within the gaseous medium except
at the location of maximum velocity where
each is individually zero. Thus we find that the
heat-transfer rate at the solid boundary only,
in the case of gases, remains the same as that
in the case of Tao; i.e. the case of negligible DF
and TP. This statement is untrue for the case of
liquids. Therefore one is required to discuss the
effects of DF on ¢*. Under crucial examination
of (58) we find that the effect of DF is to diminish
heat transfer when surface transfers heat to
fluid (which is possible if and only if T > 0) and
to magnify heat transfer when heat is transferred
to surface (which is always true when 7 < 0 and
also possible when t > 0). Certain more interest-
ing points may be seen in Fig. 2, which gives the

V. P. TYAGI

graphical variation of the dimensionless heat-
transfer rate
a¥(=4Y/C.KA?)

against the heat source number C; where #’ is
being regarded as parameter. The curve rep-
resenting the case of zero dissipation (i.e. ' = 0)
in Fig. 2 agrees with Fig. 1 of [2].

o5

0-4P gt

o3

I” n=0-0
2 7/=-05
3 o= -10
4 7'=-3-0
5 =06
6 n'=10

7 7230

FIG. 2. Cardioid duct liquid flow: heat-transfer rate g vs.
heat source number Cj with n’ as parameter.

Although we have seen that the combined
effect of DF and TP on ¢ is zero, this is not
the case with other relevant heat-transfer quan-
tities of the case of gases. For instance, see (63),
(64), (66) and (67).

From (63) and (64), we conclude that the
combined effect of DF and TP is to inhibit the
dimensionless mean temperature TY/C,I* as
well as the dimensionless mixed-mean tempera--
ture TY/C,* when 1 < 0, and to augment
both when 7 > 0. On the other hand, from (56)
and (57), we note that the effect of DF is to
augment TY/C,* and T{)/C,I* when t < 0,
and to diminish both when ¢ > 0. Thus we see
that the combined effects of DF and TP are
opposite to the corresponding effects of DF in
nature. This clearly shows that DF and TP
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produce effects which are opposite in nature, also
that the intensity of the effects of TP is greater
than that of the corresponding effects of DF.

Now, we come to the discussion of Nusselt
number. The combined effects of DF and TP,
in the case of gases, on the Nusselt number are
shown in Fig. 3. The effects of DF, in the case of
liquids, on the Nusselt number can be seen in
Figs. 4 and 5. Figs. 3, 4 and 5 give a picture of
the variation of the Nusselt number vs. Cj
when 5’ plays the role of independent parameter.
For the case of gases we have shown both the
cases: 7 > 0 and r < 0in Fig 3, but for the case
of liquids we found it convenient to picture
them separately; Fig. 4 represents the case 7 > 0
and Fig. 5 represents the case of T < 0.

70k
ol

501
N9
Y 40l
30

201
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lies in a certain finite interval. To each value of
C} lying in some different finite interval at which
Nu® becomes zero, there corresponds one and
only one value of #' in the said interval.

(ii) For each value of ', there exists a value of
C; at which Nu'® becomes infinite. But, this is
not the case with Nu®. Nu® becomes infinite
when #' lies in a certain finite interval.

10 4

] i I | | | | |
-25 -20 -I5 -05 o5 10 15 20 25
("3

_lo
-20

~30
| 7'=-20
-,7’: -1-0
3 9'= 00
-50

60 5 5= 20

| 2 3 5

FiG. 3. Cardioid duct gas flow: Nusselt number Nu'® vs.
heat source number C; at various values of #".

We note the following for Nu®@ and Nu® when
T>0:

(i) Nu'9 becomes zero at Cj —17/24 for
all values of . Nu® becomes zero only when 5’

-50 -4'5 -40 -35 -30 -26 -20 ~I5 -}0

‘C;

123

Fi1G. 4. Cardioid duct liquid flow (the case of 7 > 0): Nusselt
number Nu® vs. heat source number C} at few values of .

(iii) In Fig. 4, we see that there exists a value of

5 at which Nu'® remains the same for all values
of n'. Calculations show that this value of Cj is
nearly 1-451.

Further, our discussion of Nu® and Nu?
when 7 < 0 is as follows:
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(i) Neither Nu® nor Nu® becomes zero at
any value of Cj for all values of .

(ii) For all values of #/, Nu® does not become
infinite and remains finite at each value of Cj.
But the condition of Nu'® is somewhat different :
It remains finite and non-negative at each value
of Cj till ¥ < 11/6. Non-negative values and
discontinuity of Nu® are observed only when
n = 11/6.

801 ! —""7]’=O‘O
2 — 7n'=05
751 3 —q'=10
70 4 — =20
5 — 5'=3-0

6'5\
4]

e 601

5,5//——— [

50—

4.5

4-0 i | | | | | | J

(o]
N
ol
H
o
o
~
©

FIG. 5. Cardioid duct liquid flow (the case of 1 < 0): Nusselt
number Nu® vs. heat source number C at few values of 7"

(iti) There does not exist any value of Cj at
which either Nu® or Nu® becomes constant
for all values of #'. However, we have a value of
n' at which Nusselt number is same for all
values of Cj. For liquids this is ' = 1-04
approximately, and for gases it is 4/ = 051
approximately.

Several more interesting points may be noted
from Figs. 3-5.

In summing up, one can say that the quali-
tative effects of DF are quite interesting and
remarkable when 7 > 0. The combined qualita-
tive effects of DF and TP are equally interesting
and remarkable when t > 0. Although the effects
of DF in the case of n” > 0 are not that interesting
as they are in the case of n” < 0, but the combined
effects of DF and TP in the case of #' > 0 are not
less interesting as compared to those in the
case of 1 < 0; and rather the case of ' > 0 is
more interesting than the case of ' < 0.

V. P. TYAGI

In order to visualize the combined quanti-
tative effects of DF and TP in the case of gases
and the quantitative effects of DF in the case of
liquids, we present Figs. 6, 7 and 8. Figure 6
shows the picture of the variations of &§, £¢’
and & vs. . In this Figure, the axis of ' can
be regarded as the graph of ¢¢. Figures 7 and 8
represent the case of liquids. The variations of
¢ and €§ vs. #" have been pictured in Fig. 7.
And ¢ and £ have been pictured in Fig. 8.

25
B 54(7)
€9 201
€9
2 15k
o
o
1 | | | N il
-05 -03 -0i Ol 03 s 05
-5-——- 1’
-101—
-15 -
-20}-
~30~ 9
(3(9)
FiG. 6. Cardioid duct gas flow: variations of ¥, ¢¥ and
e with n'.

In these Figures, we see that the errors are
significant even at small values of |5|. In this
connexion, furthermore, we look into Table 1.

We find that the quantitative effects of DF, and
the combined quantitative effects of DF and TP
may be insignificant when |n'| < 0-1. However,
they are considerable when || > 0-1. Note that
at ' = 1 we have &f’ = 50, &) = 3333, =
3125, €9 = 2727, P = —1000, 9 = —1200
and & = 54-545.

One may now ask: Do some physical ex-
amples exist which belong to the subject matter
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of the present study and where #’ assume magni-
tudes such as |7'| > 017 The answer is “‘yes”,
and the following examples are given.
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The relevant physical properties of air in c.gs.
system at initial temperature 15°C are: u =
1-8 x 1074, p = 1203 x 1073, gC, = 0-240.
The conversion factor of gC, is J = 4184 x 10.

o) ol
For Cardioid cross-section, our calculations
or show that || > 02 in the first example and
30l " 2 [n'| > 0-26 in the second example. Obviously
»ol- 0 these are significant magnitudes of #".
Performing additional calculations, one can
1o~ verify that all the conditions, i.e. the assumptions
T S N A S B of laminar flow, constant physical properties,
~t0 -02 -06-04 -02 02 %}4 08 08 10 negligible free convection, and negligible entry
-1or length, are sensibly satisfied in both the examples.
-20f- In the case of oils, e.g. typical aircraft engine
ok oil, the magnitude of 5" is usually significant even
at low speeds, and is much larger than that in the
—a0l- case of water.
50—
=50 sl(l)
401~
_60k
30
-70F -
¢ -80F or )
(i ot
-90|-
el —sl-o —o%e —ol-e -0-14 —01-2 o~12 0-14 ols o%e I-IO
2 -100- ‘
Fi1G. 7. Cardioid duct liquid flow: variations of ¢§ and &y’ B 7
with #'. [20
Numerical example 1 -30f-
Consider the flow of water through a duct of _aok
finite length, say 50 cm. Let D, = 005 cm,
u; = 3 x 10% cm/s, |t| = 0:005°C/cm and t; = -501~
20°C. The relevant physical properties of water _eol
in c.g.s. system at initial temperature 20°C are:
po= 1002 x 107%; p = 0:998, gC, = 0:999. -Tor
-80#‘
Numerical example 2 ook
Consider the flow of air through the duct of €0 €0
the previous example. Let D, = 02 cm, u; = Fio. 8. Cardioid oo o
10-3 cmys, 'TI — 005 degC/em and t, = 15°C. 1G. 8. Cardioid duct lég;lézté]:"” variations of ¢ and
Table 1
”r 6(1” 6(2” 6(3‘) E(‘l) 6?) 6?) e?)
01 9-0909 47619 43478 49586  —5263 5769 545
—-01 111111 ~52632  —47619  —60606 4762 5172 545
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AuHoTAUMA—IPHBOINTCA TeopeTHHeCKOe HCCIef0BaHMe Tel1000MeHA B YCTAHOBHBUIEMCHA
JIAMMHAPHOM TOTOKE NPH BHIHYHIEHHONH KOHBeKkuuHu B TpyOax Hexpyrioro ceyenus. Hccie-
nyemasa o0JIaCTb TOHEPEYHOro cevyeHus TPyOH OTpaHUYeHA INPOM3BOJIBHOM 3aMKHYTOMN
kpupoit. ITpeanosarerca, YT0 B MOTOKE MMeeT MeCTO NMpPOM3BOJBHOE paclpefesieHue JOMoJ-
HUTEABHOI'0 MCTOYHMKA Temna. Vcnonbayemoe TeNIoBOe TPAHNYHOE YCIIOBHE COCTOMT B TOM,
4TO TeMIepaTypa CTeHKM JMHENHO W3MeHseTCH B aKcualbHOM HanpasieHuu. G yuerom
BABKOM Auccunauum v paboTel CHKATUA B YPABHEHUHU TEIIOBOro 0aJIaHCA METOXOM KOHPOpPM-
HBIX npeo0pasoBaHuil mojiydeHo HauGolee ofulee peunlenve B BHE MHTErPaJbHHX (Gopmysn
ANA TaszoB W muAKocTelt. Ofiee pelleHue CTENEHHOTO PAJA JAeTCA TOJbKO [JIA FasoB.
JIis MATIOCTpanMu YKCIeHHO HCCIeA0BANCH Clydall KapAMOMIHOK TpyOH ¢ HKOMOJHHUTENdb~
HBIM TEIJIOBHIM MCTOYHMKOM IOCTOAHHON MOIMHOCTU. IIPMBONATCA TOJBLKO OKOHYATEIbLHHE
pesyasTaThl Ge3 MaTeMaTMYeCKHX BHIKIAJOK. OCHOBHON 1LeJbI0 TAHHOW CTaThH HABJIAETCH

HCCJeJ0BaHNe KAYeCTBEHHOI'o H

KOJMYEeCTBEHHOTO BJMAHUA BA3SKOH JUcCMIAnUM JJIs

FMUAKOCTEH, a TAKIMKE TOTO e BIUAHUA ¢ y4eToM PalOoTHl CHATUA [JIA rasoB HA TenooGMeH

8a cueT IOCTOAHHOTO AKCMAJILHOrO TeMnepaTypHoro rpaguenra. Haiimeno, 4ro ykasaHHme

2QPEKTHL KAYECTBEHHO 3aMETHB M ODBIMHO KOJMYECTBEHHO {IPOABIAIOTCH NPU MOCTOAHHBIX

dusuuecKUX CBOMCTBAX, YTO ABIAETCA OOBIYHLIM YNPOIEHMEM B pAfe HCCIAETOBAHMA MO

Temoodmeny. Takme ClenaH BRIBOJ, YTO ecjIM BABKAA JMCCHNANMA U pabora ciaTud B

3ajade o TemuioofMeHe, paccMATPMBAEMoil B JJAHHOM CTaThe, 3HAYMTEJbHH, TO CBOGOAHAA
KOHBeKIMA GyjJeT He3HAUYNTeAbHOI .



